STRUKTURELLE, MÖSSBAUERSPEKTROMETRISCHE UND MAGNETISCHE UNTERSUCHUNGEN AN DER BROWNMILLERIT-MISCHRISTALLREIHE Ca₂Fe_{2-x}Ai_xO₅ BEI 298 K UND HOHEN TEMPERATUREN

von

G. J. Redhammer^{1,2}, G. Tippelt², G. Roth¹, W. Lottermoser² & G. Amthauer²

¹Institut für Kristallographie, LFG Angewandte Kristallographie und Mineralogie RWTH Aachen, Jägerstrasse 17/19, D-52056 Aachen ²Institut für Mineralogie Universität Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg

Brownmillerit Ca₂FeAlO₅, in der Zementnomenklatur auch als C4AF bezeichnet, ist eine der vier Hauptkomponenten des Portland-Zementklinkers. Bei Normaldruck existiert im ternären System CaO-Fe₂O₃-Al₂O₃ für die Ferrite der Zusammensetzung Ca₂Fe_{2-x}Al_xO₅ eine lückenlose Mischbarkeit bis zu x ≈ 1.4 [1]. Reines Ca₂Fe₂O₅ (auch bekannt unter dem Mineralnamen Srebrodoskit) kristallisiert bei Raumtemperatur (RT = 25°C) in der Raumgruppe Pnma [2], bei Gehalten von x > 0.6 kommt es zu einer Änderung der Raumgruppe. Die aluminiumreicheren Mischkristalle kristallisieren in der Raumgruppe Ibm2 [3, 4]. Darüber hinaus geht auch reines Ca₂Fe₂O₅ bei etwa 680°C von Pnma in die Raumgruppe Ibm2 über [5, 6]. Reines Ca₂Fe₂O₅ ist bei Raumtemperatur magnetisch geordnet, die Neél – Temperatur wird von [5] mit $\approx 455°$ C angegeben. Ziel unserer vorliegenden Untersuchungen im System Ca₂Fe_{2-x}Al_xO₅ ist es, zum einen das Ausmaß der möglichen Substitution von Fe³⁺ durch Al³⁺, die dabei einher gehende Änderung der Raumgruppe bei 25°C und die Verteilung von Fe³⁺ über die Oktaeder- und Tetraederposition der Struktur genau zu bestimmen, zum anderen auch das Hochtemperatur-verhalten der einzelnen Mischkristalle (thermische Ausdehnung, Auftreten eines Pnma \rightarrow Ibm2 Phasenübergangs, Neél-Temperatur) eingehend zu untersuchen.

Zu diesem Zweck wurden insgesamt 20 pulverförmige Proben mit $0 \le x \le 1.4$ bei Temperaturen von 1200°C, sowie zu Vergleichszwecken drei Proben bei 1300°C durch keramische Sinterung hergestellt (Versuchsdauer = 3 Wochen). Einkristalle bis zu 1 mm Größe konnten über eine Hochtemperatur-Lösungsmittelzüchtung unter Verwendung von CaCl₂ als Mineralisator (Probe Flux = 1 3) durch langsames Abkühlen von 1050°C auf 900°C gezüchtet werden. An den als Einkristalle vorliegenden Proben wurden die Strukturen mit Röntgenbeugung am Einkristall verfeinert und daraus die Bindungslängen, -winkel sowie Verzerrungsparameter bestimmt. Die Kationenverteilung von Fe³⁺ und Al³⁺ über den Oktaeder- und den Tetraederplatz wurde sowohl aus den Einkristall-Datensätzen als auch über die Mößbauerspektroskopie bestimmt.

Wie in der Literatur beschrieben, kristallisiert reines $Ca_2Fe_2O_5$ bei 25°C in der Raumgruppe Pnma, a = 5.4259(1) Å, b = 14.7632(2) Å, c = 5.5969(1) Å, V = 448.34(1) Å³. Der Phasenübergang von Pnma nach Ibm2 zeigt sich in unseren Messungen für $Ca_2Fe_2O_5$ bei 735°C. Der Einbau von Al³⁺ bewirkt ein Absinken der Gitterparameter. Besonders deutlich ist dies für den b- Gitterparameter zu beobachten, während in c-Richtung nur minimale Änderungen in der Gittermetrik auftreten. Die Änderung der Raumgruppe vom Pnma nach Ibm2 erfolgt bei 25°C bei Al³⁺ Gehalten zwischen x = 0.55 und x = 0.60. Dies kann aus der Abnahme der integralen Intensität des Reflexes (131) sehr gut bestimmt werden. Mit den Phasenübergang sind keine nennenswerte Diskontinuitäten im Verlauf der Gitterparameter als Funktion des Al³⁺ Gehaltes verbunden. Der Einbau von Al³⁺ bewirkt auch ein Absinken der Temperatur des Pnma \rightarrow Ibm2 Phasenüberganges. Für Zusammensetzungen mit x = 0.40 liegt dieser bei 630°C, für x = 0.50bei ≈ 450 °C. Ein genaues T-x Phasendiagramm für diese Änderung der Raumgruppe als Funktion von Temperatur und Zusammensetzung ist in Arbeit und wird vorgestellt. Ebenso erfolgt eine detaillierte Diskussion der Änderungen von strukturellen Parametern (Bindungslängen, -winkel, Polyederverzerrungen) als Funktion des Al³⁺ Gehaltes.

Das Mößbauerspektrum von Ca₂Fe₂O₅ besteht aus zwei magnetisch aufgespaltenen Unterspektren, die auf Grund der ⁵⁷Fe Mößbauerparametern eindeutig dem Fe³⁺ auf der Oktaeder-(O) und auf Tetraederposition (T) zugeordnet werden können. Das Verhältnis von Fe³⁺ auf O/T entspricht innerhalb des experimentellen Fehlers dem idealen Wert von 1:1. Sowohl Tetraeder als auch Oktaederposition zeigen eine für Fe³⁺ unüblich hohe Quadrupolaufspaltung (QS), die auf deutlich verzerrte Koordinationspolyeder hinweist. Die QS ist positiv für den Oktaederplatz und negativ für den Tetraederplatz, der polare Winkel θ beträgt in beiden Fällen 85° Mit zunehmendem Einbau von Al³⁺ werden die Spektren komplexer. Neben einem Unterspektrum für Fe^{3+} (O) können zwei Unterspektren für Fe^{3+} (T) beobachtet werden, die sich allerdings nur in der Größe es internen magnetischen Feldes H(o) am Kernort unterscheiden. Neutronenbeugungsuntersuchungen sind zur Klärung der magnetischen Spinstruktur in Planung. Bis zu einem Al³⁺ Gehalt von x = 1.1 zeigen die Mößbauerspektren magnetisch aufgespaltene Unterspektren. Erst für Zusammensetzungen ≥ 1.2 liegt die Neél-Temperatur unterhalb von Raumtemperatur. Der Einbau von Al³⁺ erfolgt bei kleinen x vornehmlich auf der Tetraederposition. Auch bei Al³⁺ Gehalten über x = 1 sind beide kristallographischen Plätze mit Fe³⁺ und Al³⁺ besetzt, wobei Al³⁺ den Tetraeder bevorzugt. Innerhalb der Mischkristallreihe zeigen sich keine Änderungen in der Größe der Quadrupolaufspaltung. Dies kann als ein Indiz gesehen werden für ein annäherndes Gleichbleiben der lokalen geometrischen/elektronischen Verzerrungszustände um die Eisenkerne.

References

- HANSEN, W. C. et al. (1928): Studies on the system calcium oxide-alumina-ferric-oxide. J. Am. Ceramic Soc., 50, 396-408.
- [2] COVILLE, A. C. (1970): The crystal structure of Ca₂Fe₂O₅ and its relation to the nuclear electric field gradient at the iron site. - Acta Cryst., B26, 1469-1473.
- [3] COVILLE, A. C. & GELLER, S. (1971) The crystal structure of brownmillerite, Ca₂Fe₂O₅. Acta Cryst., B27, 2311-2315.
- [4] SMITH, D. (1962): Crystallographic changes with the substitution of aluminium for iron in Dicalcium ferrite. Acta Cryst., 15, 1146-1152.
- [5] GELLER, S. et al. (1971): Crystal chemistry and magnetic structure of substituted Ca₂FeO₅. Progress in Solid State Chemistry, Vol 5, 1-26.
- [6] KAHLENBERG, V., et al. (1998): Strukturelle Untersuchungen an Ca₂Fe₂O₅ mittels Röntgen und Neutronenbeugung. - Europ. J. Mineral, 10, Beiheft 1, 147.