Mg²⁺, Fe²⁺ - VERTEILUNG IN SYNTHETISCHEM OLIVIN (FA50FO50)

by

M. Morozov¹, C. Brinckmann², H. Kroll², W. Lottermoser¹, G. Tippelt¹ & G. Amthauer¹

¹Institut für Mineralogie Universität Salzburg, Hellbrunnerstrasse 34, A-5020 Salzburg ²Institut für Mineralogie Universität Münster, Corrensstrasse 24, D-48149 Münster

In der Olivin Mischkristallreihe Mg_2SiO_4 Forsterit (fo) - Fe_2SiO_4 Fayalite (fa) mit der Raumgruppe Pnma besetzen Mg^{2+} und Fe^{2+} zwei kristallographisch unterschiedliche Gitterplätze: 4c mit der Punktsymmetrie m (M2) und 4a mit der Punktsymmetrie (M1). Wie mehrere Untersuchungen gezeigt haben ist die Mg^{2+} , Fe^{2+} -Verteilung auf M2 und M1 temperaturabhängig [e.g. 1, 2, 3].

In der vorliegenden Untersuchung wurden Olivine mit der Zusammensetzung 50 mol% fo und 50 mol% fa aus stöchiometrischen Mischungen der Oxide MgO, Fe₂O₃, and SiO₂ bei hohen Temperaturen und kontrollierten Sauerstoff-Fugazitäten (CO/CO₂) synthetisiert. Diese Proben wurden dann bei Temperaturen zwischen 500°C und 800°C in Abständen von 25°C getempert und dann abgeschreckt. Von diesen Proben wurden ⁵⁷Fe Mössbauer Spektren mit einem üblichen Mössbauer Spektrometer mit Heizvorrichtung für den Absorber aufgenommen.

Die bei Zimmertemperatur des Absorbers aufgenommenen Spektren zeigen nur 2 Resonanzabsorptionslinien, die sich für quantitative Zwecke nicht genügend genau durch 2 Dubletten auswerten lassen. Bei höheren Absorbertemperaturen ist das Spektrum besser aufgelöst und ermöglicht eine quantitative Auswertung durch 2 Dubletten, die sich dem M1- bzw. dem M2-Platz zuordnen lassen. Deshalb wurden alle Spektren bei einer Absorbertemperatur von 300°C aufgenommen. Bei dieser Temperatur ist auch kein Kationenaustausch zwischen den M1- und M2-Positionen innerhalb der Messzeit eines Spektrums (5 Tage) zu erwarten.

Die Ergebnisse unserer Messungen zeigen, dass Fe^{2+} die M1-Plätze bevorzugt, und dass der Anteil an Fe^{2+} auf M1 mit steigender Temperatur von 52.4 % bei 500°C auf 55.7 % bei 750°C zunimmt. Dies übersteigt deutlich den Messfehler von ± 1 %. Diese Resultate werden mit denen von Röntgen- und Neutronenbeugungsuntersuchungen verglichen [1,2,3] und thermodynamisch ausgewertet.

References

- [1] HEINEMANN, R., STAAK, V., FISCHER, A., KROLL, H., VAD, T. & KIRFEL, A. (1999): Temperature dependence of Fe, Mg partitioning in Acapulco olivine. Amer. Mineral. 84: 1400-1405.
- [2] RINALDI, R., ARTIOLI, G., WILSON, C. C. & MCINTIRE, G. (2000): Octahedral cation ordering in olivine at high temperature. 1: in situ neutron single-crystal diffraction studies on natural mantle olivines (Fal2 and Fal0). Phys. Chem. Minerals 27: 623-629.
- [3] REDFERN, S. A. T., ARTIOLI, G., RINALDI, R., HENDERSON, C. M. B., KNIGHT, K. S. & WOOD, B. J. (2000): Octahedral cation ordering in olivine at high temperature. II: an in situ neutron powder diffraction study on synthetic MgFeSiO₄ (Fa50). - Phys. Chem. Minerals 27: 630-637.