dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Improved variational methods in statistical data assimilation
VerfasserIn J. Ye, N. Kadakia, P. J. Rozdeba, H. D. I. Abarbanel, J. C. Quinn
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 22, no. 2 ; Nr. 22, no. 2 (2015-04-07), S.205-213
Datensatznummer 250120975
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-22-205-2015.pdf
 
Zusammenfassung
Data assimilation transfers information from an observed system to a physically based model system with state variables x(t). The observations are typically noisy, the model has errors, and the initial state x(t0) is uncertain: the data assimilation is statistical. One can ask about expected values of functions ⟨G(X)⟩ on the path X = {x(t0), ..., x(tm)} of the model state through the observation window tn = {t0, ..., tm}. The conditional (on the measurements) probability distribution P(X) = exp[−A0(X)] determines these expected values. Variational methods using saddle points of the "action" A0(X), known as 4DVar (Talagrand and Courtier, 1987; Evensen, 2009), are utilized for estimating ⟨G(X)⟩. In a path integral formulation of statistical data assimilation, we consider variational approximations in a realization of the action where measurement errors and model errors are Gaussian. We (a) discuss an annealing method for locating the path X0 giving a consistent minimum of the action A0(X0), (b) consider the explicit role of the number of measurements at each tn in determining A0(X0), and (c) identify a parameter regime for the scale of model errors, which allows X0 to give a precise estimate of ⟨G(X0)⟩ with computable, small higher-order corrections.
 
Teil von