dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Socio-hydrological water balance for water allocation between human and environmental purposes in catchments
VerfasserIn S. Zhou, Y. Huang, Y. Wei, G. Wang
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 19, no. 8 ; Nr. 19, no. 8 (2015-08-27), S.3715-3726
Datensatznummer 250120799
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-19-3715-2015.pdf
 
Zusammenfassung
Rebalancing water allocation between human consumptive uses and the environment in water catchments is a global challenge. This paper proposes a socio-hydrological water balance framework by partitioning catchment total evapotranspiration (ET) into ET for society and ET for natural ecological systems, and establishing the linkage between the changes of water balance and its social drivers and resulting environmental consequences in the Murray–Darling Basin (MDB), Australia, over the period 1900–2010. The results show that the 100-year period of water management in the MDB could be divided into four periods corresponding to major changes in basin management within the socio-hydrological water balance framework: period 1 (1900–1956) – expansion of water and land use for the societal system, period 2 (1956–1978) – maximization of water and land use for the societal system, period 3 (1978–2002) – maximization of water use for the societal system from water diversion, and period 4 (2002–present) – rebalancing of water and land use between the societal and ecological systems. Most of management changes in the MDB were passive and responsive. A precautionary approach to water allocation between the societal and ecological systems should be developed. The socio-hydrological water balance framework could serve as a theoretical foundation for water allocation to evaluate the dynamic balance between the societal and ecological systems in catchments.
 
Teil von