dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Evaluation of high-resolution precipitation analyses using a dense station network
VerfasserIn A. Kann, I. Meirold-Mautner, F. Schmid, G. Kirchengast, J. Fuchsberger, V. Meyer, L. Tüchler, B. Bica
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 19, no. 3 ; Nr. 19, no. 3 (2015-03-26), S.1547-1559
Datensatznummer 250120669
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-19-1547-2015.pdf
 
Zusammenfassung
The ability of radar–rain gauge merging algorithms to precisely analyse convective precipitation patterns is of high interest for many applications, e.g. hydrological modelling, thunderstorm warnings, and, as a reference, to spatially validate numerical weather prediction models. However, due to drawbacks of methods like cross-validation and due to the limited availability of reference data sets on high temporal and spatial scales, an adequate validation is usually hardly possible, especially on an operational basis. The present study evaluates the skill of very high-resolution and frequently updated precipitation analyses (rapid-INCA) by means of a very dense weather station network (WegenerNet), operated in a limited domain of the southeastern parts of Austria (Styria). Based on case studies and a longer-term validation over the convective season 2011, a general underestimation of the rapid-INCA precipitation amounts is shown by both continuous and categorical verification measures, although the temporal and spatial variability of the errors is – by convective nature – high. The contribution of the rain gauge measurements to the analysis skill is crucial. However, the capability of the analyses to precisely assess the convective precipitation distribution predominantly depends on the representativeness of the stations under the prevalent convective condition.
 
Teil von