dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel From days to decades: numerical modelling of freshwater lens response to climate change stressors on small low-lying islands
VerfasserIn S. Holding, D. M. Allen
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 19, no. 2 ; Nr. 19, no. 2 (2015-02-16), S.933-949
Datensatznummer 250120631
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-19-933-2015.pdf
 
Zusammenfassung
Freshwater lenses on small islands are vulnerable to many climate change-related stressors, which can act over relatively long time periods, on the order of decades (e.g., sea level rise, changes in recharge), or short time periods, such as days (storm surge overwash). This study evaluates the response of the freshwater lens on a small low-lying island to various stressors. To account for the varying temporal and spatial scales of the stressors, two different density-dependent flow and solute transport codes are used: SEAWAT (saturated) and HydroGeoSphere (unsaturated/saturated). The study site is Andros Island in the Bahamas, which is characteristic of other low-lying carbonate islands in the Caribbean and Pacific regions. In addition to projected sea level rise and reduced recharge under future climate change, Andros Island experienced a storm surge overwash event during Hurricane Francis in 2004, which contaminated the main wellfield. Simulations of reduced recharge result in a greater loss of freshwater lens volume (up to 19%), while sea level rise contributes a lower volume loss (up to 5%) due to the flux-controlled conceptualization of Andros Island, which limits the impact of sea level rise. Reduced recharge and sea level rise were simulated as incremental instantaneous shifts. The lens responds relatively quickly to these stressors, within 0.5 to 3 years, with response time increasing as the magnitude of the stressor increases. Simulations of the storm surge overwash indicate that the freshwater lens recovers over time; however, prompt remedial action can restore the lens to potable concentrations up to 1 month sooner.
 
Teil von