dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A constraint-based search algorithm for parameter identification of environmental models
VerfasserIn S. Gharari, M. Shafiei, M. Hrachowitz, R. Kumar, F. Fenicia, H. V. Gupta, H. H. G. Savenije
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 18, no. 12 ; Nr. 18, no. 12 (2014-12-05), S.4861-4870
Datensatznummer 250120545
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-18-4861-2014.pdf
 
Zusammenfassung
Many environmental systems models, such as conceptual rainfall-runoff models, rely on model calibration for parameter identification. For this, an observed output time series (such as runoff) is needed, but frequently not available (e.g., when making predictions in ungauged basins). In this study, we provide an alternative approach for parameter identification using constraints based on two types of restrictions derived from prior (or expert) knowledge. The first, called parameter constraints, restricts the solution space based on realistic relationships that must hold between the different model parameters while the second, called process constraints requires that additional realism relationships between the fluxes and state variables must be satisfied. Specifically, we propose a search algorithm for finding parameter sets that simultaneously satisfy such constraints, based on stepwise sampling of the parameter space. Such parameter sets have the desirable property of being consistent with the modeler's intuition of how the catchment functions, and can (if necessary) serve as prior information for further investigations by reducing the prior uncertainties associated with both calibration and prediction.
 
Teil von