dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Stochastic spatial disaggregation of extreme precipitation to validate a regional climate model and to evaluate climate change impacts over a small watershed
VerfasserIn P. Gagnon, A. N. Rousseau
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 18, no. 5 ; Nr. 18, no. 5 (2014-05-09), S.1695-1704
Datensatznummer 250120352
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-18-1695-2014.pdf
 
Zusammenfassung
Regional climate models (RCMs) are valuable tools to evaluate impacts of climate change (CC) at regional scale. However, as the size of the area of interest decreases, the ability of a RCM to simulate extreme precipitation events decreases due to the spatial resolution. Thus, it is difficult to evaluate whether a RCM bias on localized extreme precipitation is caused by the spatial resolution or by a misrepresentation of the physical processes in the model. Thereby, it is difficult to trust the CC impact projections for localized extreme precipitation. Stochastic spatial disaggregation models can bring the RCM precipitation data at a finer scale and reduce the bias caused by spatial resolution. In addition, disaggregation models can generate an ensemble of outputs, producing an interval of possible values instead of a unique discrete value.

The objective of this work is to evaluate whether a stochastic spatial disaggregation model applied on annual maximum daily precipitation (i) enables the validation of a RCM for a period of reference, and (ii) modifies the evaluation of CC impacts over a small area. Three simulations of the Canadian RCM (CRCM) covering the period 1961–2099 are used over a small watershed (130 km2) located in southern Québec, Canada. The disaggregation model applied is based on Gibbs sampling and accounts for physical properties of the event (wind speed, wind direction, and convective available potential energy – CAPE), leading to realistic spatial distributions of precipitation. The results indicate that disaggregation has a significant impact on the validation. However, it does not provide a precise estimate of the simulation bias because of the difference in resolution between disaggregated values (4 km) and observations, and because of the underestimation of the spatial variability by the disaggregation model for the most convective events. Nevertheless, disaggregation illustrates that the simulations used mostly overestimated annual maximum precipitation depth in the study area during the reference period. Also, disaggregation slightly increases the signal of CC compared to the RCM raw simulations, highlighting the importance of spatial resolution in CC impact evaluation of extreme events.
 
Teil von