dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Addressing drought conditions under current and future climates in the Jordan River region
VerfasserIn T. Törnros, L. Menzel
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 18, no. 1 ; Nr. 18, no. 1 (2014-01-23), S.305-318
Datensatznummer 250120259
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-18-305-2014.pdf
 
Zusammenfassung
The Standardized Precipitation–Evaporation Index (SPEI) was applied in order to address the drought conditions under current and future climates in the Jordan River region located in the southeastern Mediterranean area. In the first step, the SPEI was derived from spatially interpolated monthly precipitation and temperature data at multiple timescales: accumulated precipitation and monthly mean temperature were considered over a number of timescales – for example 1, 3, and 6 months. To investigate the performance of the drought index, correlation analyses were conducted with simulated soil moisture and the Normalized Difference Vegetation Index (NDVI) obtained from remote sensing. A comparison with the Standardized Precipitation Index (SPI), i.e., a drought index that does not incorporate temperature, was also conducted. The results show that the 6-month SPEI has the highest correlation with simulated soil moisture and best explains the interannual variation of the monthly NDVI. Hence, a timescale of 6 months is the most appropriate when addressing vegetation growth in the semi-arid region. In the second step, the 6-month SPEI was derived from three climate projections based on the Intergovernmental Panel on Climate Change emission scenario A1B. When comparing the period 2031–2060 with 1961–1990, it is shown that the percentage of time with moderate, severe and extreme drought conditions is projected to increase strongly. To address the impact of drought on the agricultural sector, the irrigation water demand during certain drought years was thereafter simulated with a hydrological model on a spatial resolution of 1 km. A large increase in the demand for irrigation water was simulated, showing that the agricultural sector is expected to become even more vulnerable to drought in the future.
 
Teil von