dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Isotopic signatures of production and uptake of H2 by soil
VerfasserIn Q. Chen, M. E. Popa, A. M. Batenburg, T. Röckmann
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 15, no. 22 ; Nr. 15, no. 22 (2015-11-24), S.13003-13021
Datensatznummer 250120180
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-15-13003-2015.pdf
 
Zusammenfassung
Molecular hydrogen (H2) is the second most abundant reduced trace gas (after methane) in the atmosphere, but its biogeochemical cycle is not well understood. Our study focuses on the soil production and uptake of H2 and the associated isotope effects. Air samples from a grass field and a forest site in the Netherlands were collected using soil chambers. The results show that uptake and emission of H2 occurred simultaneously at all sampling sites, with strongest emission at the grassland sites where clover (N2 fixing legume) was present. The H2 mole fraction and deuterium content were measured in the laboratory to determine the isotopic fractionation factor during H2 soil uptake (αsoil) and the isotopic signature of H2 that is simultaneously emitted from the soil (δDsoil). By considering all net-uptake experiments, an overall fractionation factor for deposition of αsoil = kHD / kHH = 0.945 ± 0.004 (95 % CI) was obtained. The difference in mean αsoil between the forest soil 0.937 ± 0.008 and the grassland 0.951 ± 0.026 is not statistically significant. For two experiments, the removal of soil cover increased the deposition velocity (vd) and αsoil simultaneously, but a general positive correlation between vd and αsoil was not found in this study. When the data are evaluated with a model of simultaneous production and uptake, the isotopic composition of H2 that is emitted at the grassland site is calculated as δDsoil = (−530 ± 40) ‰. This is less deuterium depleted than what is expected from isotope equilibrium between H2O and H2.
 
Teil von