dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Impact of particle shape on the morphology of noctilucent clouds
VerfasserIn J. Kiliani, G. Baumgarten, F.-J. Lübken, U. Berger
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 15, no. 22 ; Nr. 15, no. 22 (2015-11-19), S.12897-12907
Datensatznummer 250120174
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-15-12897-2015.pdf
 
Zusammenfassung
Noctilucent clouds (NLCs) occur during summer in the polar region at altitudes around 83 km. They consist of ice particles with a typical size around 50 nm. The shape of NLC particles is less well known but is important both for interpreting optical measurements and modeling ice cloud characteristics. In this paper, NLC modeling of microphysics and optics is adapted to use cylindrical instead of spherical particle shape. The optical properties of the resulting ice clouds are compared directly to NLC three-color measurements by the Arctic Lidar Observatory for Middle Atmosphere Research (ALOMAR) Rayleigh/Mie/Raman (RMR) lidar between 1998 and 2014. Shape distributions including both needle- and disc-shaped particles are consistent with lidar measurements. The best agreement occurs if disc shapes are 60 % more common than needles, with a mean axis ratio of 2.8. Cylindrical particles cause stronger ice clouds on average than spherical shapes with an increase of backscatter at 532 nm by ≈ 30 % and about 20 % in ice mass density. This difference is less pronounced for bright than for weak ice clouds. Cylindrical shapes also cause NLCs to have larger but a smaller number of ice particles than for spherical shapes.
 
Teil von