|
Titel |
Characterization of primary and secondary wood combustion products generated under different burner loads |
VerfasserIn |
E. A. Bruns, M. Krapf, J. Orasche, Y. Huang, R. Zimmermann, L. Drinovec, G. Mocnik, I. El-Haddad, J. G. Slowik, J. Dommen, U. Baltensperger, A. S. H. Prévôt |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 15, no. 5 ; Nr. 15, no. 5 (2015-03-12), S.2825-2841 |
Datensatznummer |
250119517
|
Publikation (Nr.) |
copernicus.org/acp-15-2825-2015.pdf |
|
|
|
Zusammenfassung |
Residential wood burning contributes to the total atmospheric aerosol
burden; however, large uncertainties remain in the magnitude and
characteristics of wood burning products. Primary emissions are influenced
by a variety of parameters, including appliance type, burner wood load and
wood type. In addition to directly emitted particles, previous laboratory
studies have shown that oxidation of gas-phase emissions produces compounds
with sufficiently low volatility to readily partition to the particles,
forming considerable quantities of secondary organic aerosol (SOA). However,
relatively little is known about wood burning SOA, and the effects of burn
parameters on SOA formation and composition are yet to be determined. There
is clearly a need for further study of primary and secondary wood combustion
aerosols to advance our knowledge of atmospheric aerosols and their impacts
on health, air quality and climate.
For the first time, smog chamber experiments were conducted to investigate
the effects of wood loading on both primary and secondary wood combustion
products. Products were characterized using a range of particle- and gas-phase instrumentation, including an aerosol mass spectrometer (AMS). A novel
approach for polycyclic aromatic hydrocarbon (PAH) quantification from AMS
data was developed and results were compared to those from GC-MS analysis of
filter samples.
Similar total particle mass emission factors were observed under high and
average wood loadings; however, high fuel loadings were found to generate
significantly higher contributions of PAHs to the total organic aerosol (OA)
mass compared to average loadings. PAHs contributed 15 ± 4% (mean ±2 sample standard deviations) to the total OA mass in high-load
experiments, compared to 4 ± 1% in average-load experiments. With
aging, total OA concentrations increased by a factor of 3 ± 1 for high
load experiments compared to 1.6 ± 0.4 for average-load experiments. In
the AMS, an increase in PAH and aromatic signature ions at lower m / z values,
likely fragments from larger functionalized PAHs, was observed with aging.
Filter samples also showed an increase in functionalized PAHs in the
particles with aging, particularly oxidized naphthalene species. As PAHs and
their oxidation products are known to have deleterious effects on health,
this is a noteworthy finding to aid in the mitigation of negative wood burning impacts by improving burner operation protocols. |
|
|
Teil von |
|
|
|
|
|
|