|
Titel |
Developing an effective 2-D urban flood inundation model for city emergency management based on cellular automata |
VerfasserIn |
L. Liu, Y. Liu, X. Wang, D. Yu, K. Liu, H. Huang, G. Hu |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1561-8633
|
Digitales Dokument |
URL |
Erschienen |
In: Natural Hazards and Earth System Sciences ; 15, no. 3 ; Nr. 15, no. 3 (2015-03-04), S.381-391 |
Datensatznummer |
250119359
|
Publikation (Nr.) |
copernicus.org/nhess-15-381-2015.pdf |
|
|
|
Zusammenfassung |
Flash floods have occurred frequently in the urban areas of southern China. An
effective process-oriented urban flood inundation model is urgently
needed for urban storm-water and emergency management. This study develops an
efficient and flexible cellular automaton (CA) model to simulate storm-water
runoff and the flood inundation process during extreme storm events. The
process of infiltration, inlets discharge and flow dynamics can be simulated
with little preprocessing on commonly available basic urban geographic
data. In this model, a set of gravitational diverging rules are implemented
to govern the water flow in a rectangular template of three cells by three cells of a
raster layer. The model is calibrated by one storm event and validated by
another in a small urban catchment in Guangzhou of southern China. The depth
of accumulated water at the catchment outlet is interpreted from street-monitoring closed-circuit television (CCTV) videos and verified by on-site survey. A
good level of agreement between the simulated process and the reality is
reached for both storm events. The model reproduces the changing extent and
depth of flooded areas at the catchment outlet with an accuracy of 4 cm in
water depth. Comparisons with a physically based 2-D model (FloodMap) show
that the model is capable of effectively simulating flow dynamics. The high
computational efficiency of the CA model can meet the needs of city
emergency management. |
|
|
Teil von |
|
|
|
|
|
|