|
Titel |
Trajectory model simulations of ozone (O3) and carbon monoxide (CO) in the lower stratosphere |
VerfasserIn |
T. Wang, W. J. Randel, A. E. Dessler, M. R. Schoeberl, D. E. Kinnison |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 14, no. 14 ; Nr. 14, no. 14 (2014-07-16), S.7135-7147 |
Datensatznummer |
250118885
|
Publikation (Nr.) |
copernicus.org/acp-14-7135-2014.pdf |
|
|
|
Zusammenfassung |
A domain-filling, forward trajectory model originally developed for
simulating stratospheric water vapor is used to simulate ozone (O3) and
carbon monoxide (CO) in the lower stratosphere. Trajectories are
initialized in the upper troposphere, and the circulation is based on
reanalysis wind fields. In addition, chemical production and loss rates
along trajectories are included using calculations from the Whole Atmosphere
Community Climate Model (WACCM). The trajectory model results show good
overall agreement with satellite observations from the Aura Microwave Limb
Sounder (MLS) and the Atmospheric Chemistry Experiment Fourier Transform
Spectrometer (ACE-FTS) in terms of spatial structure and seasonal
variability. The trajectory model results also agree well with the Eulerian
WACCM simulations. Analysis of the simulated tracers shows that seasonal
variations in tropical upwelling exerts strong influence on O3 and CO
in the tropical lower stratosphere, and the coupled seasonal cycles provide
a useful test of the transport simulations. Interannual variations in the
tracers are also closely coupled to changes in upwelling, and the trajectory
model can accurately capture and explain observed changes during 2005–2011.
This demonstrates the importance of variability in tropical upwelling in
forcing chemical changes in the tropical lower stratosphere. |
|
|
Teil von |
|
|
|
|
|
|