|
Titel |
Air–snowpack exchange of bromine, ozone and mercury in the springtime Arctic simulated by the 1-D model PHANTAS – Part 1: In-snow bromine activation and its impact on ozone |
VerfasserIn |
K. Toyota, J. C. McConnell, R. M. Staebler, A. P. Dastoor |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 14, no. 8 ; Nr. 14, no. 8 (2014-04-25), S.4101-4133 |
Datensatznummer |
250118637
|
Publikation (Nr.) |
copernicus.org/acp-14-4101-2014.pdf |
|
|
|
Zusammenfassung |
To provide a theoretical framework towards a better understanding of ozone
depletion events (ODEs) and atmospheric mercury depletion events (AMDEs) in
the polar boundary layer, we have developed a one-dimensional model that
simulates multiphase chemistry and transport of trace constituents from
porous snowpack and through the atmospheric boundary layer (ABL) as a unified
system. This paper constitutes Part 1 of the study, describing a general
configuration of the model and the results of simulations related to reactive
bromine release from the snowpack and ODEs during the Arctic spring. A common
set of aqueous-phase reactions describes chemistry both within the
liquid-like layer (LLL) on the grain surface of the snowpack and within
deliquesced "haze" aerosols mainly composed of sulfate in the atmosphere.
Gas-phase reactions are also represented by the same mechanism in the
atmosphere and in the snowpack interstitial air (SIA). Consequently, the
model attains the capacity of simulating interactions between chemistry and
mass transfer that become particularly intricate near the interface between
the atmosphere and the snowpack. In the SIA, reactive uptake on LLL-coated
snow grains and vertical mass transfer act simultaneously on gaseous HOBr, a
fraction of which enters from the atmosphere while another fraction is formed
via gas-phase chemistry in the SIA itself. A "bromine explosion", by which
HOBr formed in the ambient air is deposited and then converted
heterogeneously to Br2, is found to be a dominant process of reactive
bromine formation in the top 1 mm layer of the snowpack. Deeper in the
snowpack, HOBr formed within the SIA leads to an in-snow bromine explosion,
but a significant fraction of Br2 is also produced via aqueous
radical chemistry in the LLL on the surface of the snow grains. These top-
and deeper-layer productions of Br2 both contribute to the release of
Br2 to the atmosphere, but the deeper-layer production is found to be
more important for the net outflux of reactive bromine. Although ozone is
removed via bromine chemistry, it is also among the key species that control
both the conventional and in-snow bromine explosions. On the other hand,
aqueous-phase radical chemistry initiated by photolytic OH formation in the
LLL is also a significant contributor to the in-snow source of Br2
and can operate without ozone, whereas the delivery of Br2 to the
atmosphere becomes much smaller after ozone is depleted. Catalytic ozone loss
via bromine radical chemistry occurs more rapidly in the SIA than in the
ambient air, giving rise to apparent dry deposition velocities for ozone from
the air to the snow on the order of 10−3 cm s−1 during
daytime. Overall, however, the depletion of ozone in the system is caused
predominantly by ozone loss in the ambient air. Increasing depth of the
turbulent ABL under windy conditions will delay the buildup of reactive
bromine and the resultant loss of ozone, while leading to the higher column
amount of BrO in the atmosphere. During the Arctic spring, if moderately
saline and acidic snowpack is as prevalent as assumed in our model runs on
sea ice, the shallow, stable ABL under calm weather conditions may undergo
persistent ODEs without substantial contributions from blowing/drifting snow
and wind-pumping mechanisms, whereas the column densities of BrO in the ABL
will likely remain too low in the course of such events to be detected
unambiguously by satellite nadir measurements. |
|
|
Teil von |
|
|
|
|
|
|