dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Uncertainty analysis of projections of ozone-depleting substances: mixing ratios, EESC, ODPs, and GWPs
VerfasserIn G. J. M. Velders, J. S. Daniel
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 14, no. 6 ; Nr. 14, no. 6 (2014-03-17), S.2757-2776
Datensatznummer 250118511
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-14-2757-2014.pdf
 
Zusammenfassung
The rates at which ozone-depleting substances (ODSs) are removed from the atmosphere, which determine the lifetimes of these ODSs, are key factors for determining the rate of ozone layer recovery in the coming decades. We present here a comprehensive uncertainty analysis of future mixing ratios of ODSs, levels of equivalent effective stratospheric chlorine (EESC), ozone depletion potentials, and global warming potentials (GWPs), using, among other information, the 2013 WCRP/SPARC (World Climate Research Programme/Stratospheric Processes and their Role in Climate) assessment of lifetimes of ODSs and their uncertainties. The year EESC returns to pre-1980 levels, a metric commonly used to indicate a level of recovery from ODS-induced ozone depletion, is 2048 for midlatitudes and 2075 for Antarctic conditions based on the lifetimes from the SPARC assessment, which is about 2 and 4 yr, respectively, later than based on the lifetimes from the WMO (World Meteorological Organization) assessment of 2011. However, the uncertainty in this return to 1980 levels is much larger than the shift due to this change in lifetimes. The year EESC returns to pre-1980 levels ranges from 2039 to 2064 (95% confidence interval) for midlatitudes and from 2061 to 2105 for the Antarctic spring. The primary contribution to these ranges comes from the uncertainty in the lifetimes, with smaller contributions from uncertainties in other modeled parameters. The earlier years of the return estimates derived by the uncertainty analysis, i.e., 2039 for midlatitudes and 2061 for Antarctic spring, are comparable to a hypothetical scenario in which emissions of ODSs cease in 2014. The later end of the range, i.e., 2064 for midlatitudes and 2105 for Antarctic spring, can also be obtained by a scenario with an additional emission of about 7 Mt CFC-11 eq. (eq. – equivalent) in 2015, which is the same as about 2 times the projected cumulative anthropogenic emissions of all ODSs from 2014 to 2050, or about 12 times the projected cumulative HCFC emissions from 2014 to 2050.
 
Teil von