|
Titel |
Estimates of tropical bromoform emissions using an inversion method |
VerfasserIn |
M. J. Ashfold, N. R. P. Harris, A. J. Manning, A. D. Robinson, N. J. Warwick, J. A. Pyle |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 14, no. 2 ; Nr. 14, no. 2 (2014-01-28), S.979-994 |
Datensatznummer |
250118316
|
Publikation (Nr.) |
copernicus.org/acp-14-979-2014.pdf |
|
|
|
Zusammenfassung |
Bromine plays an important role in ozone chemistry in both the troposphere
and stratosphere. When measured by mass, bromoform (CHBr3) is
thought to be the largest organic source of bromine to the atmosphere. While
seaweed and phytoplankton are known to be dominant sources, the size and the
geographical distribution of CHBr3 emissions remains uncertain.
Particularly little is known about emissions from the Maritime Continent,
which have usually been assumed to be large, and which appear to be
especially likely to reach the stratosphere. In this study we aim to reduce
this uncertainty by combining the first multi-annual set of CHBr3
measurements from this region, and an inversion process, to investigate
systematically the distribution and magnitude of CHBr3 emissions.
The novelty of our approach lies in the application of the inversion method
to CHBr3. We find that local measurements of a short-lived gas like
CHBr3 can be used to constrain emissions from only a relatively
small, sub-regional domain. We then obtain detailed estimates of
CHBr3 emissions within this area, which appear to be relatively
insensitive to the assumptions inherent in the inversion process. We
extrapolate this information to produce estimated emissions for the entire
tropics (defined as 20° S–20° N) of
225 Gg CHBr3 yr−1. The ocean in the area we base our
extrapolations upon is typically somewhat shallower, and more biologically
productive, than the tropical average. Despite this, our tropical estimate is
lower than most other recent studies, and suggests that CHBr3
emissions in the coastline-rich Maritime Continent may not be stronger than
emissions in other parts of the tropics. |
|
|
Teil von |
|
|
|
|
|
|