dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Pressure dependent isotopic fractionation in the photolysis of formaldehyde-d2
VerfasserIn E. J. K. Nilsson, J. A. Schmidt, M. S. Johnson
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 14, no. 2 ; Nr. 14, no. 2 (2014-01-20), S.551-558
Datensatznummer 250118291
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-14-551-2014.pdf
 
Zusammenfassung
The isotope effects in formaldehyde photolysis are the key link between the δD of methane emissions and the δD of atmospheric in situ hydrogen production. A few recent studies have suggested that a pressure dependence in the isotopic fractionation can partly explain enrichment of deuterium with altitude in the atmosphere. The mechanism and the extent of this pressure dependency is, however, not adequately described. In the present work D2CO and H2CO were photolyzed in a static reaction chamber at bath gas pressures of 50, 200, 400, 600 and 1000 mbar; these experiments compliment and extend our earlier work with HDCO vs. H2CO. The UV lamps used for photolysis emit light at wavelengths that primarily dissociate formaldehyde into molecular products, CO and H2 or D2. The isotope effect k(H2CO)/k(D2CO) = 3.16 ± 0.03 at 1000 mbar is in good agreement with results from previous studies. Similarly to what was previously shown for k(H2CO)/k(HDCO), the isotope effect decreased as pressure decreased. In addition, a model was constructed using RRKM theory to calculate the lifetime of excited formaldehyde on the S0 surface, to investigate its role in the observed pressure dependent photolytic fractionation of deuterium. The model shows that part of the fractionation is a result of competition between the isotopologue dependent rates of unimolecular dissociation and collisional relaxation. We suggest that the remaining fractionation is due to isotope effects in the rate of the non-radiative transition from S1 to S0, which are not considered in the present model.
 
Teil von