|
Titel |
On the stratigraphic integrity of leaf-wax biomarkers in loess paleosols |
VerfasserIn |
C. Häggi, R. Zech, C. McIntyre, M. Zech, T. I. Eglinton |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1726-4170
|
Digitales Dokument |
URL |
Erschienen |
In: Biogeosciences ; 11, no. 9 ; Nr. 11, no. 9 (2014-05-05), S.2455-2463 |
Datensatznummer |
250117393
|
Publikation (Nr.) |
copernicus.org/bg-11-2455-2014.pdf |
|
|
|
Zusammenfassung |
Paleoenvironmental and paleoclimate reconstructions based on molecular
proxies, such as those derived from leaf-wax biomarkers, in loess-paleosol
sequences represent a promising line of investigation in Quaternary research.
The main premise of such reconstructions is the synsedimentary deposition of
biomarkers and dust, which has become a debated subject in recent years. This
study uses two independent approaches to test the stratigraphic integrity of
leaf-wax biomarkers: (i) long-chain n-alkanes and fatty acids are
quantified in two sediment-depth profiles in glacial till on the Swiss
Plateau, consisting of a Holocene topsoil and the underlying B and C
horizons. Since glacial sediments are initially very poor in organic matter,
significant amounts of leaf-wax biomarkers in the B and C horizons of those
profiles would reflect postsedimentary root-derived or microbial
contributions. (ii) Compound-specific radiocarbon measurements are conducted
on n-alkanes and n-alkanoic (fatty) acids from several depth intervals in
the loess section "Crvenka", Serbia, and the results are compared to
independent estimates of sediment age.
We find extremely low concentrations
of plant-wax n-alkanes and fatty acids in the B and C horizons below the
topsoils in the sediment profiles. Moreover, compound-specific radiocarbon
analysis yields plant-wax 14C ages that agree well with published
luminescence ages and stratigraphy of the Serbian loess deposit. Both
approaches confirm that postsedimentary, root-derived or microbial
contributions are negligible in the two investigated systems. The good
agreement between the ages of odd and even homologues also indicates that
reworking and incorporation of fossil leaf waxes is not particularly relevant
either. |
|
|
Teil von |
|
|
|
|
|
|