dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Icehouse–greenhouse variations in marine denitrification
VerfasserIn T. J. Algeo, P. A. Meyers, R. S. Robinson, H. Rowe, G. Q. Jiang
Medientyp Artikel
Sprache Englisch
ISSN 1726-4170
Digitales Dokument URL
Erschienen In: Biogeosciences ; 11, no. 4 ; Nr. 11, no. 4 (2014-02-27), S.1273-1295
Datensatznummer 250117253
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/bg-11-1273-2014.pdf
 
Zusammenfassung
Long-term secular variation in the isotopic composition of seawater fixed nitrogen (N) is poorly known. Here, we document variation in the N-isotopic composition of marine sediments (δ15Nsed) since 660 Ma (million years ago) in order to understand major changes in the marine N cycle through time and their relationship to first-order climate variation. During the Phanerozoic, greenhouse climate modes were characterized by low δ15Nsed (∼−2 to +2‰) and icehouse climate modes by high δ15Nsed (∼+4 to +8‰). Shifts toward higher δ15Nsed occurred rapidly during the early stages of icehouse modes, prior to the development of major continental glaciation, suggesting a potentially important role for the marine N cycle in long-term climate change. Reservoir box modeling of the marine N cycle demonstrates that secular variation in δ15Nsed was likely due to changes in the dominant locus of denitrification, with a shift in favor of sedimentary denitrification during greenhouse modes owing to higher eustatic (global sea-level) elevations and greater on-shelf burial of organic matter, and a shift in favor of water-column denitrification during icehouse modes owing to lower eustatic elevations, enhanced organic carbon sinking fluxes, and expanded oceanic oxygen-minimum zones. The results of this study provide new insights into operation of the marine N cycle, its relationship to the global carbon cycle, and its potential role in modulating climate change at multimillion-year timescales.
 
Teil von