|
Titel |
Assessment of sea ice simulations in the CMIP5 models |
VerfasserIn |
Q. Shu, Z. Song, F. Qiao |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1994-0416
|
Digitales Dokument |
URL |
Erschienen |
In: The Cryosphere ; 9, no. 1 ; Nr. 9, no. 1 (2015-02-20), S.399-409 |
Datensatznummer |
250116758
|
Publikation (Nr.) |
copernicus.org/tc-9-399-2015.pdf |
|
|
|
Zusammenfassung |
The historical simulations of sea ice during 1979 to 2005 by the Coupled
Model Intercomparison Project Phase 5 (CMIP5) are compared with satellite
observations, Global Ice-Ocean Modeling and Assimilation System (GIOMAS)
output data and Pan-Arctic Ice Ocean Modeling and Assimilation System
(PIOMAS) output data in this study. Forty-nine models, almost all of the
CMIP5 climate models and earth system models with historical simulation, are
used. For the Antarctic, multi-model ensemble mean (MME) results can give
good climatology of sea ice extent (SIE), but the linear trend is incorrect.
The linear trend of satellite-observed Antarctic SIE is 1.29 (±0.57) × 105 km2 decade−1; only about 1/7 CMIP5 models
show increasing trends, and the linear trend of CMIP5 MME is negative with
the value of −3.36 (±0.15) × 105 km2 decade−1.
For the Arctic, both climatology and linear trend are better reproduced. Sea
ice volume (SIV) is also evaluated in this study, and this is a first
attempt to evaluate the SIV in all CMIP5 models. Compared with the GIOMAS
and PIOMAS data, the SIV values in both the Antarctic and the Arctic are too small,
especially for the Antarctic in spring and winter. The GIOMAS Antarctic SIV
in September is 19.1 × 103 km3, while the corresponding
Antarctic SIV of CMIP5 MME is 13.0 × 103 km3 (almost
32% less). The Arctic SIV of CMIP5 in April is 27.1 × 103 km3,
which is also less than that from PIOMAS SIV (29.5 × 103 km3).
This means that the sea ice thickness simulated in CMIP5
is too thin, although the SIE is fairly well simulated. |
|
|
Teil von |
|
|
|
|
|
|