dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Block-based cloud classification with statistical features and distribution of local texture features
VerfasserIn H.-Y. Cheng, C.-C. Yu
Medientyp Artikel
Sprache Englisch
ISSN 1867-1381
Digitales Dokument URL
Erschienen In: Atmospheric Measurement Techniques ; 8, no. 3 ; Nr. 8, no. 3 (2015-03-10), S.1173-1182
Datensatznummer 250116208
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/amt-8-1173-2015.pdf
 
Zusammenfassung
This work performs cloud classification on all-sky images. To deal with mixed cloud types in one image, we propose performing block division and block-based classification. In addition to classical statistical texture features, the proposed method incorporates local binary pattern, which extracts local texture features in the feature vector. The combined feature can effectively preserve global information as well as more discriminating local texture features of different cloud types. The experimental results have shown that applying the combined feature results in higher classification accuracy compared to using classical statistical texture features. In our experiments, it is also validated that using block-based classification outperforms classification on the entire images. Moreover, we report the classification accuracy using different classifiers including the k-nearest neighbor classifier, Bayesian classifier, and support vector machine.
 
Teil von