dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Properties of rainfall in a tropical volcanic island deduced from UHF wind profiler measurements
VerfasserIn A. Réchou, T. Narayana Rao, O. Bousquet, M. Plu, R. Decoupes
Medientyp Artikel
Sprache Englisch
ISSN 1867-1381
Digitales Dokument URL
Erschienen In: Atmospheric Measurement Techniques ; 7, no. 2 ; Nr. 7, no. 2 (2014-02-07), S.409-418
Datensatznummer 250115594
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/amt-7-409-2014.pdf
 
Zusammenfassung
The microphysical properties of rainfall at the island of Réunion are analysed and quantified according to one year of wind profiler observations collected at Saint-Denis international airport. The statistical analysis clearly shows important differences in rain vertical profiles as a function of the seasons. During the dry season, the vertical structure of precipitation is driven by trade wind and boundary-layer inversions, both of which limit the vertical extension of the clouds. The rain rate is lower than 2.5 mm h−1 throughout the lower part of the troposphere (about 2 km) and decreases in the higher altitudes. During the moist season, the average rain rate is around 5 mm h−1 and nearly uniform from the ground up to 4 km.

The dynamical and microphysical properties (including drop size distributions) of four distinct rainfall events are also investigated through the analysis of four case studies representative of the variety of rain events occurring on Réunion: summer deep convection, northerly-to-northeasterly flow atmospheric pattern, cold front and winter depression embedded in trade winds. Radar-derived rain parameters are in good agreement with those obtained from collocated rain gauge observations in all cases, which demonstrates that accurate qualitative and quantitative analysis can be inferred from wind profiler data. Fluxes of kinetic energy are also estimated from wind profiler observations in order to evaluate the impact of rainfall on soil erosion. Results show that horizontal kinetic energy fluxes are systematically one order of magnitude higher than vertical kinetic energy fluxes. A simple relationship between the reflectivity factor and vertical kinetic energy fluxes is proposed based on the results of the four case studies.
 
Teil von