dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Magnetic observatories: biases over CHAMP satellite mission
VerfasserIn G. Verbanac, M. Mandea, M. Bandić, S. Subašić
Medientyp Artikel
Sprache Englisch
ISSN 1869-9510
Digitales Dokument URL
Erschienen In: Solid Earth ; 6, no. 2 ; Nr. 6, no. 2 (2015-06-26), S.775-781
Datensatznummer 250115465
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/se-6-775-2015.pdf
 
Zusammenfassung
Taking advantage of 9 years of the CHAMP (CHAllenging Minisatellite Payload) satellite mission (June 2000–August 2009), we investigate the temporal evolution of the observatory monthly magnetic biases. To determine these biases we compute X (northward), Y (eastward) and Z (vertically downward) monthly means from 42 observatory 1 min values or hourly values, and compare them to synthetic monthly means obtained from a G field model (Lesur et al., 2015). Afterwards, the average of biases at all observatories over 9 years is calculated and analyzed. Both the long-term trends and short-period variations (hereafter ε variations) around these averages are then investigated. The simple oscillatory pattern of ε, found at all observatories and in each component over the entire considered period, indicates that the crustal field has not changed. A comparison with both MAGSAT and Ørsted biases given for epochs 1979.92 and 1999.92 which are based on 2 single months (November and December) of MAGSAT and Ørsted satellite data, respectively, further shows that the crustal field has probably remained constant over last 3 decades. The long-trend seen in ε reflects the changes within the solar cycle 23. The short period variations observed in the ε time series are related to the external field. The amplitudes of these variations are found to be in phase with solar cycle periods, being remarkably larger over 2000–2005 than 2006–2009. Furthermore, clear semi-annual variations are observed in ε, with larger extremes appearing mostly around October and November, and around May and June of each year in X, and vice versa in Y and Z. A common external field pattern is found for the European monthly biases. The dependence of the bias monthly variations on geomagnetic latitudes is not found for non-European observatories. The results from this study represent a base to further exploit the magnetic biases computed for observatories and repeat station locations together by using data from the new satellite mission Swarm.
 
Teil von