dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Fracturing of ductile anisotropic multilayers: influence of material strength
VerfasserIn E. Gomez-Rivas, A. Griera, M.-G. Llorens
Medientyp Artikel
Sprache Englisch
ISSN 1869-9510
Digitales Dokument URL
Erschienen In: Solid Earth ; 6, no. 2 ; Nr. 6, no. 2 (2015-05-19), S.497-514
Datensatznummer 250115446
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/se-6-497-2015.pdf
 
Zusammenfassung
Fractures in rocks deformed under dominant ductile conditions typically form simultaneously with viscous flow. Material strength plays a fundamental role during fracture development in such systems, since fracture propagation can be strongly reduced if the material accommodates most of the deformation by viscous flow. Additionally, the degree and nature of anisotropy can influence the orientation and type of resulting fractures. In this study, four plasticine multilayer models have been deformed under coaxial boundary conditions to investigate the influence of strength and anisotropy on the formation of fracture networks. The experiments were made of different mixtures and had two types of anisotropy: composite and composite-intrinsic. The transition from non-localised deformation to systems where fracture networks control deformation accommodation is determined by the ability of the material to dissipate the external work and relax the elastic strain during loading either by viscous flow or by coeval flow and failure. Tension cracks grow in experiments with composite anisotropy, giving rise to a network of shear fractures when they collapse and coalesce with progressive deformation. The presence of an additional intrinsic anisotropy enhances the direct nucleation of shear fractures, the propagation and final length of which depend on the rigidity of the medium. Material strength increases the fracture maximum displacement (dmax) to fracture length (L) ratio, and the resulting values are significantly higher than those from fractures in elastic–brittle rocks. This can be related to the low propagation rates of fractures in rocks undergoing ductile deformation.
 
Teil von