|
Titel |
Aggregate breakdown and surface seal development influenced by rain intensity, slope gradient and soil particle size |
VerfasserIn |
S. Arjmand Sajjadi, M. Mahmoodabadi |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1869-9510
|
Digitales Dokument |
URL |
Erschienen |
In: Solid Earth ; 6, no. 1 ; Nr. 6, no. 1 (2015-03-05), S.311-321 |
Datensatznummer |
250115405
|
Publikation (Nr.) |
copernicus.org/se-6-311-2015.pdf |
|
|
|
Zusammenfassung |
Aggregate breakdown is an important process which controls infiltration rate
(IR) and the availability of fine materials necessary for structural sealing
under rainfall. The purpose of this study was to investigate the effects of
different slope gradients, rain intensities and particle size distributions
on aggregate breakdown and IR to describe the formation of surface seal. To
address this issue, 60 experiments were carried out in a
35 × 30 × 10 cm detachment tray using a rainfall
simulator. By sieving a sandy loam soil, two sub-samples with different
maximum aggregate sizes of 2 mm (Dmax2 mm) and 4.75 mm
(Dmax4.75 mm) were prepared. The soils were exposed to two
different rain intensities (57 and 80 mm h−1) on several slopes (0.5,
2.5, 5, 10 and 20%) each at three replicates. The result showed that
for all slope gradients and rain intensities, the most fraction percentages
in soils Dmax2 and Dmax4.75 mm were in the finest
size classes of 0.02 and 0.043 mm, respectively. The soil containing finer
aggregates exhibited higher transportability of pre-detached material than
the soil containing larger aggregates. Also, IR increased with increasing
slope gradient, rain intensity and aggregate size under unsteady state
conditions because of less development of surface seal. However, under steady
state conditions, no significant relationship was found between slope and IR.
The findings of this study revealed the importance of rain intensity, slope
steepness and soil aggregate size on aggregate breakdown and seal formation,
which can control infiltration rate and the consequent runoff and erosion
rates. |
|
|
Teil von |
|
|
|
|
|
|