dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Magma storage and plumbing of adakite-type post-ophiolite intrusions in the Sabzevar ophiolitic zone, northeast Iran
VerfasserIn K. Jamshidi, H. Ghasemi, V. R. Troll, M. Sadeghian, B. Dahren
Medientyp Artikel
Sprache Englisch
ISSN 1869-9510
Digitales Dokument URL
Erschienen In: Solid Earth ; 6, no. 1 ; Nr. 6, no. 1 (2015-01-14), S.49-72
Datensatznummer 250115386
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/se-6-49-2015.pdf
 
Zusammenfassung
Subduction-related adakite-type intrusive rocks emplaced into the late Cretaceous–Paleocene Sabzevar ophiolite zone, northeast Iran, range from Mg-andesite to rhyodacite in composition. Here we investigate the magma supply system to these subvolcanic intrusive rocks by applying thermobarometric mineral and mineral–melt equilibrium models, including amphibole thermobarometry, plagioclase–melt thermobarometry and clinopyroxene–melt barometry. Based on the results of these thermobarometric models, plagioclase crystallized dominantly at pressures of ~350 (130 to 468) MPa, while amphiboles record both low pressures (~300 MPa) and very high pressures (>700 MPa) of crystallization. The latter is supported by the calculated pressures for clinopyroxene crystallization (550 to 730 MPa). The association of amphibole with clinopyroxene and no plagioclase in the most primitive samples (Mg-andesites) is consistent with amphibole fractionation from very hydrous magmas at deep crustal levels of the plumbing system, which may have been a key process in intensifying adakite-type affinities in this rock suite. Barometry, combined with frequent disequilibrium features such as oscillatory-zoned and sieve-textured plagioclase crystals with An-rich overgrowths in more evolved samples, implies that final magma differentiation occurred in an open upper crustal magma system that developed progressively stronger compositional modifications during high-level magma storage.
 
Teil von