|
Titel |
3-D geomechanical–numerical model of the contemporary crustal stress state in the Alberta Basin (Canada) |
VerfasserIn |
K. Reiter, O. Heidbach |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1869-9510
|
Digitales Dokument |
URL |
Erschienen |
In: Solid Earth ; 5, no. 2 ; Nr. 5, no. 2 (2014-11-25), S.1123-1149 |
Datensatznummer |
250115349
|
Publikation (Nr.) |
copernicus.org/se-5-1123-2014.pdf |
|
|
|
Zusammenfassung |
In the context of examining the potential usage of safe and sustainable
geothermal energy in the Alberta Basin, whether in deep sediments or
crystalline rock, the understanding of the in situ stress state is crucial.
It is a key challenge to estimate the 3-D stress state at an arbitrarily
chosen point in the crust, based on sparsely distributed in situ stress data.
To address this challenge, we present a large-scale 3-D
geomechanical–numerical model (700 km × 1200 km × 80 km) from
a large portion of the Alberta Basin, to provide a 3-D continuous
quantification of the contemporary stress orientations and stress magnitudes.
To calibrate the model, we use a large database of in situ stress orientation
(321 SHmax) as well as stress magnitude data (981 SV,
1720 Shmin and 2 (+11) SHmax) from the Alberta Basin.
To find the best-fit model, we vary the material properties and primarily the
displacement boundary conditions of the model. This study focusses in detail
on the statistical calibration procedure, because of the large amount of
available data, the diversity of data types, and the importance of the order
of data tests.
The best-fit model provides the total 3-D stress tensor for nearly the whole
Alberta Basin, and allows estimation of stress orientation and stress
magnitudes in advance of any well. First-order implications for the well
design and configuration of enhanced geothermal systems are revealed.
Systematic deviations of the modelled stress from the in situ data are found
for stress orientations in the Peace River and the Bow Island Arch as well as
for leak-off test magnitudes. |
|
|
Teil von |
|
|
|
|
|
|