dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Identification of magnetic anomalies based on ground magnetic data analysis using multifractal modeling: a case study in Qoja-Kandi, East Azerbaijan Province, Iran
VerfasserIn E. Mansouri, F. Feizi, A. A. Karbalaei Ramezanali
Medientyp Artikel
Sprache Englisch
ISSN 2198-5634
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics Discussions ; 2, no. 4 ; Nr. 2, no. 4 (2015-07-24), S.1137-1157
Datensatznummer 250115185
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npgd-2-1137-2015.pdf
 
Zusammenfassung
Ground magnetic anomaly separation using reduction-to-the-pole (RTP) technique and the fractal concentration-area (C-A) method has been applied to the Qoja-Kandi prosepecting area in NW Iran. The geophysical survey that resulted in the ground magnetic data was conducted for magnetic elements exploration. Firstly, RTP technique was applied for recognizing underground magnetic anomalies. RTP anomalies was classified to different populations based on this method. For this reason, drilling points determination with RTP technique was complicated. Next, C-A method was applied on the RTP-Magnetic-Anomalies (RTP-MA) for demonstrating magnetic susceptibility concentration. This identification was appropriate for increasing the resolution of the drilling points determination and decreasing the drilling risk, due to the economic costs of underground prospecting. In this study, the results of C-A Modeling on the RTP-MA are compared with 8 borehole data. The results show there is good correlation between anomalies derived via C-A method and log report of boreholes. Two boreholes were drilled in magnetic susceptibility concentration, based on multifractal modeling data analyses, between 63 533.1 and 66 296 nT. Drilling results show appropriate magnetite thickness with the grades greater than 20 % Fe total. Also, anomalies associated with andesite units host iron mineralization.
 
Teil von