dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Nonstationary time series prediction combined with slow feature analysis
VerfasserIn G. Wang, X. Chen
Medientyp Artikel
Sprache Englisch
ISSN 2198-5634
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics Discussions ; 2, no. 1 ; Nr. 2, no. 1 (2015-01-26), S.97-114
Datensatznummer 250115144
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npgd-2-97-2015.pdf
 
Zusammenfassung
Almost all climate time series have some degree of nonstationarity due to external driving forces perturbations of the observed system. Therefore, these external driving forces should be taken into account when reconstructing the climate dynamics. This paper presents a new technique of combining the driving force of a time series obtained using the Slow Feature Analysis (SFA) approach, then introducing the driving force into a predictive model to predict non-stationary time series. In essence, the main idea of the technique is to consider the driving forces as state variables and incorporate them into the prediction model. To test the method, experiments using a modified logistic time series and winter ozone data in Arosa, Switzerland, were conducted. The results showed improved and effective prediction skill.
 
Teil von