dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Precision variational approximations in statistical data assimilation
VerfasserIn J. Ye, N. Kadakia, P. J. Rozdeba, H. D. I. Abarbanel, J. C. Quinn
Medientyp Artikel
Sprache Englisch
ISSN 2198-5634
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics Discussions ; 1, no. 2 ; Nr. 1, no. 2 (2014-10-10), S.1603-1620
Datensatznummer 250115127
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npgd-1-1603-2014.pdf
 
Zusammenfassung
Data assimilation transfers information from observations of a complex system to physically-based system models with state variables x(t). Typically, the observations are noisy, the model has errors, and the initial state of the model is uncertain, so the data assimilation is statistical. One can thus ask questions about expected values of functions ⟨G(X)⟩ on the path X = {x(t0), ..., x(tm)} of the model as it moves through an observation window where measurements are made at times {t0, ..., tm}. The probability distribution on the path P(X) = exp[−A0(X)] determines these expected values. Variational methods seeking extrema of the "action" A0(X), widely known as 4DVar (Talagrand and Courtier, 1987; Evensen, 2009),, are widespread for estimating ⟨G(X) ⟩ in many fields of science. In a path integral formulation of statistical data assimilation, we consider variational approximations in a standard realization of the action where measurement and model errors are Gaussian. We (a) discuss an annealing method for locating the path X0 giving a consistent global minimum of the action A0(X0), (b) consider the explicit role of the number of measurements at each measurement time in determining A0(X0), and (c) identify a parameter regime for the scale of model errors which allows X0 to give a precise estimate of ⟨G(X0)⟩ with computable, small higher order corrections.
 
Teil von