dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Indirect downscaling of hourly precipitation based on atmospheric circulation and temperature
VerfasserIn F. Beck, A. Bárdossy
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 17, no. 12 ; Nr. 17, no. 12 (2013-12-05), S.4851-4863
Datensatznummer 250086017
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-17-4851-2013.pdf
 
Zusammenfassung
The main source of information on future climate conditions are global circulation models (GCMs). While the various GCMs agree on an increase of surface temperature, the predictions for precipitation exhibit high spread among the models, especially in shorter-than-daily temporal resolution. This paper presents a method to predict regional distributions of the hourly rainfall depth based on daily mean sea level pressure and temperature data. It is an indirect downscaling method avoiding uncertain precipitation data from the GCM. It is based on a fuzzy logic classification of atmospheric circulation patterns (CPs) that is further subdivided by means of the average daily temperature. The observed empirical distributions at 30 rain gauges to each CP-temperature class are assumed as constant and used for projections of the hourly precipitation sums in the future. The method was applied to the CP-temperature sequence derived from the 20th-century run and the scenario A1B run of ECHAM5. For the study region in southwestern Germany ECHAM5 predicts that the summers will become progressively drier. Nevertheless, the frequency of the highest hourly precipitation sums will increase. According to the predictions, estival water stress and the risk of extreme hourly precipitation will both increase simultaneously during the next decades. However, the results are yet to be confirmed by further \mbox{investigation} based on other GCMs.
 
Teil von