dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel A global ozone climatology from ozone soundings via trajectory mapping: a stratospheric perspective
VerfasserIn J. Liu, D. W. Tarasick, V. E. Fioletov, C. McLinden, T. Zhao, S. Gong, C. Sioris, J. J. Jin, G. Liu, O. Moeini
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 13, no. 22 ; Nr. 13, no. 22 (2013-11-25), S.11441-11464
Datensatznummer 250085836
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-13-11441-2013.pdf
 
Zusammenfassung
This study explores a domain-filling trajectory approach to generate a global ozone climatology from relatively sparse ozonesonde data. Global ozone soundings comprising 51 898 profiles at 116 stations over 44 yr (1965–2008) are used, from which forward and backward trajectories are calculated from meteorological reanalysis data to map ozone measurements to other locations and so fill in the spatial domain. The resulting global ozone climatology is archived monthly for five decades from the 1960s to the 2000s on a grid of 5° × 5° × 1 km (latitude, longitude, and altitude), from the surface to 26 km altitude. It is also archived yearly for the same period. The climatology is validated at 20 selected ozonesonde stations by comparing the actual ozone sounding profile with that derived through trajectory mapping of ozone sounding data from all stations except the one being compared. The two sets of profiles are in good agreement, both overall with correlation coefficient r = 0.991 and root mean square (RMS) of 224 ppbv and individually with r from 0.975 to 0.998 and RMS from 87 to 482 ppbv. The ozone climatology is also compared with two sets of satellite data from the Satellite Aerosol and Gas Experiment (SAGE) and the Optical Spectrography and InfraRed Imager System (OSIRIS). The ozone climatology compares well with SAGE and OSIRIS data in both seasonal and zonal means. The mean differences are generally quite small, with maximum differences of 20% above 15 km. The agreement is better in the Northern Hemisphere, where there are more ozonesonde stations, than in the Southern Hemisphere; it is also better in the middle and high latitudes than in the tropics where reanalysis winds are less accurate. This ozone climatology captures known features in the stratosphere as well as seasonal and decadal variations of these features. The climatology clearly shows the depletion of ozone from the 1970s to the mid 1990s and ozone increases in the 2000s in the lower stratosphere. When this climatology is used as the upper boundary condition in an Environment Canada operational chemical forecast model, the forecast is improved in the vicinity of the upper troposphere-lower stratosphere (UTLS) region. This ozone climatology is latitudinally, longitudinally, and vertically resolved and it offers more complete high latitude coverage as well as a much longer record than current satellite data. As the climatology depends on neither a priori data nor photochemical modeling, it provides independent information and insight that can supplement satellite data and model simulations of stratospheric ozone.
 
Teil von