dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Critical impacts of global warming on land ecosystems
VerfasserIn S. Ostberg, W. Lucht, S. Schaphoff, D. Gerten
Medientyp Artikel
Sprache Englisch
ISSN 2190-4979
Digitales Dokument URL
Erschienen In: Earth System Dynamics ; 4, no. 2 ; Nr. 4, no. 2 (2013-10-08), S.347-357
Datensatznummer 250084956
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/esd-4-347-2013.pdf
 
Zusammenfassung
Globally increasing temperatures are likely to have impacts on terrestrial, aquatic and marine ecosystems that are difficult to manage. Quantifying impacts worldwide and systematically as a function of global warming is fundamental to substantiating the discussion on climate mitigation targets and adaptation planning. Here we present a macro-scale analysis of climate change impacts on terrestrial ecosystems based on newly developed sets of climate scenarios featuring a step-wise sampling of global mean temperature increase between 1.5 and 5 K by 2100. These are processed by a biogeochemical model (LPJmL) to derive an aggregated metric of simultaneous biogeochemical and structural shifts in land surface properties which we interpret as a proxy for the risk of shifts and possibly disruptions in ecosystems.

Our results show a substantial risk of climate change to transform terrestrial ecosystems profoundly. Nearly no area of the world is free from such risk, unless strong mitigation limits global warming to around 2 degrees above preindustrial level. Even then, our simulations for most climate models agree that up to one-fifth of the land surface may experience at least moderate ecosystem change, primarily at high latitudes and high altitudes. If countries fulfil their current emissions reduction pledges, resulting in roughly 3.5 K of warming, this area expands to cover half the land surface, including the majority of tropical forests and savannas and the boreal zone. Due to differences in regional patterns of climate change, the area potentially at risk of major ecosystem change considering all climate models is up to 2.5 times as large as for a single model.
 
Teil von