 |
Titel |
A functional group oxidation model (FGOM) for SOA formation and aging |
VerfasserIn |
X. Zhang, J. H. Seinfeld |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 13, no. 12 ; Nr. 13, no. 12 (2013-06-18), S.5907-5926 |
Datensatznummer |
250018710
|
Publikation (Nr.) |
copernicus.org/acp-13-5907-2013.pdf |
|
|
|
Zusammenfassung |
Secondary organic aerosol (SOA) formation from a volatile organic compound
(VOC) involves multiple generations of oxidation that include
functionalization and fragmentation of the parent carbon backbone and
likely particle-phase oxidation and/or accretion reactions. Despite the
typical complexity of the detailed molecular mechanism of SOA formation and
aging, a relatively small number of functional groups characterize the
oxidized molecules that constitute SOA. Given the carbon number and set of
functional groups, the volatility of the molecule can be estimated. We
present here a functional group oxidation model (FGOM) that represents the
process of SOA formation and aging. The FGOM contains a set of parameters
that are to be determined by fitting of the model to laboratory chamber data:
total organic aerosol concentration, and O : C and H : C atomic ratios.
The sensitivity of the model prediction to variation of the adjustable
parameters allows one to assess the relative importance of various pathways
involved in SOA formation. An analysis of SOA formation from the high- and
low-NOx photooxidation of four C12 alkanes (n-dodecane,
2-methylundecane, hexylcyclohexane, and cyclododecane) using the FGOM is
presented, and comparison with the statistical oxidation model (SOM) of Cappa
et al. (2013) is discussed. |
|
|
Teil von |
|
|
|
|
|
|