|
Titel |
Dynamic evaluation of a multi-year model simulation of particulate matter concentrations over Europe |
VerfasserIn |
È. Lecoeur, C. Seigneur |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 13, no. 8 ; Nr. 13, no. 8 (2013-04-25), S.4319-4337 |
Datensatznummer |
250018610
|
Publikation (Nr.) |
copernicus.org/acp-13-4319-2013.pdf |
|
|
|
Zusammenfassung |
A 9 yr air quality simulation is conducted from 2000 to 2008 over Europe
using the Polyphemus/Polair3D chemical-transport model (CTM) and then
evaluated against the measurements of the European Monitoring and Evaluation
Programme (EMEP).
The spatial distribution of PM2.5 over Europe shows high concentrations
over northern Italy (36 μg m−3) and some areas of Eastern
Europe, France, and Benelux, and low concentrations over Scandinavia, Spain,
and the easternmost part of Europe. PM2.5 composition differs among
regions.
The operational evaluation shows satisfactory model performance for ozone
(O3). PM2.5, PM10, and sulfate (SO4=) meet the performance goal
of Boylan and Russell (2006). Nitrate (NO3−) and ammonium (NH4+) are
overestimated, although NH4+ meets the performance criterion. The
correlation coefficients between simulated and observed data are 63% for
O3, 57% for PM10, 59% for PM2.5, 57% for SO4=, 42% for
NO3−, and 58% for NH4+. The comparison with other recent 1 yr
model simulations shows that all models overestimate nitrate. The performance
of PM2.5, sulfate, and ammonium is comparable to that of the other
models.
The dynamic evaluation shows that the response of PM2.5 to changes in
meteorology differs depending on location and the meteorological variable
considered. Wind speed and precipitation show a strong negative day-to-day
correlation with PM2.5 and its components (except for sea salt, which
shows a positive correlation), which tends towards 0 as the day lag increases.
On the other hand, the correlation coefficient is near constant for
temperature, for any day lag and PM2.5 species, but it may be positive
or negative depending on the species and, for sulfate, depending on the
location. The effects of precipitation and wind speed on PM2.5 and its
components are better reproduced by the model than the effects of
temperature. This is mainly due to the fact that temperature has different
effects on the PM2.5 components, unlike precipitation and wind speed,
which impact most of the PM2.5 components in the same way.
These results suggest that state-of-the-science air quality models reproduce
satisfactorily the effect of meteorology on PM2.5 and therefore are
suitable to investigate the effects of climate change on particulate air
quality, although uncertainties remain concerning semivolatile PM2.5
components. |
|
|
Teil von |
|
|
|
|
|
|