dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Response of fine particulate matter concentrations to changes of emissions and temperature in Europe
VerfasserIn A. G. Megaritis, C. Fountoukis, P. E. Charalampidis, C. Pilinis, S. N. Pandis
Medientyp Artikel
Sprache Englisch
ISSN 1680-7316
Digitales Dokument URL
Erschienen In: Atmospheric Chemistry and Physics ; 13, no. 6 ; Nr. 13, no. 6 (2013-03-26), S.3423-3443
Datensatznummer 250018541
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/acp-13-3423-2013.pdf
 
Zusammenfassung
PMCAMx-2008, a three dimensional chemical transport model (CTM), was applied in Europe to quantify the changes in fine particle (PM2.5) concentration in response to different emission reductions as well as to temperature increase. A summer and a winter simulation period were used, to investigate the seasonal dependence of the PM2.5 response to 50% reductions of sulfur dioxide (SO2), ammonia (NH3), nitrogen oxides (NOx), anthropogenic volatile organic compounds (VOCs) and anthropogenic primary organic aerosol (POA) emissions and also to temperature increases of 2.5 and 5 K. Reduction of NH3 emissions seems to be the most effective control strategy for reducing PM2.5, in both periods, resulting in a decrease of PM2.5 up to 5.1 μg m−3 and 1.8 μg m−3 (5.5% and 4% on average) during summer and winter respectively, mainly due to reduction of ammonium nitrate (NH4NO3) (20% on average in both periods). The reduction of SO2 emissions decreases PM2.5 in both periods having a significant effect over the Balkans (up to 1.6 μg m−3) during the modeled summer period, mainly due to decrease of sulfate (34% on average over the Balkans). The anthropogenic POA control strategy reduces total OA by 15% during the modeled winter period and 8% in the summer period. The reduction of total OA is higher in urban areas close to its emissions sources. A slight decrease of OA (8% in the modeled summer period and 4% in the modeled winter period) is also predicted after a 50% reduction of VOCs emissions due to the decrease of anthropogenic SOA. The reduction of NOx emissions reduces PM2.5 (up to 3.4 μg m−3) during the summer period, due to a decrease of NH4NO3, causing although an increase of ozone concentration in major urban areas and over Western Europe. Additionally, the NOx control strategy actually increases PM2.5 levels during the winter period, due to more oxidants becoming available to react with SO2 and VOCs. The increase of temperature results in a decrease of PM2.5 in both periods over Central Europe, mainly due to a decrease of NH4NO3 during summer (18%) and fresh POA during wintertime (35%). Significant increases of OA are predicted during the summer due mainly to the increase of biogenic VOC emissions. On the contrary, OA is predicted to decrease in the modeled winter period due to the dominance of fresh POA reduction and the small biogenic SOA contribution to OA. The resulting increase of oxidant levels from the temperature rise lead to an increase of sulfate levels in both periods, mainly over North Europe and the Atlantic Ocean. The substantial reduction of PM2.5 components due to emissions reductions of their precursors outlines the importance of emissions for improving air quality, while the sensitivity of PM2.5 concentrations to temperature changes indicate that climate interactions need to be considered when predicting future levels of PM, with different net effects in different parts of Europe.
 
Teil von