|
Titel |
Black carbon vertical profiles strongly affect its radiative forcing uncertainty |
VerfasserIn |
B. H. Samset, G. Myhre, M. Schulz, Y. Balkanski, S. Bauer, T. K. Berntsen, H. Bian, N. Bellouin, T. Diehl, R. C. Easter, S. J. Ghan, T. Iversen, S. Kinne, A. Kirkevåg, J.-F. Lamarque, G. Lin, X. Liu, J. E. Penner, Ø. Seland, R. B. Skeie, P. Stier, T. Takemura, K. Tsigaridis, K. Zhang |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1680-7316
|
Digitales Dokument |
URL |
Erschienen |
In: Atmospheric Chemistry and Physics ; 13, no. 5 ; Nr. 13, no. 5 (2013-03-01), S.2423-2434 |
Datensatznummer |
250018463
|
Publikation (Nr.) |
copernicus.org/acp-13-2423-2013.pdf |
|
|
|
Zusammenfassung |
The impact of black carbon (BC) aerosols on the global radiation balance is
not well constrained. Here twelve global aerosol models are used to show
that at least 20% of the present uncertainty in modeled BC direct
radiative forcing (RF) is due to diversity in the simulated vertical profile
of BC mass. Results are from phases 1 and 2 of the global aerosol model
intercomparison project (AeroCom). Additionally, a significant fraction of
the variability is shown to come from high altitudes, as, globally, more
than 40% of the total BC RF is exerted above 5 km. BC emission regions and
areas with transported BC are found to have differing characteristics. These
insights into the importance of the vertical profile of BC lead us to
suggest that observational studies are needed to better characterize the
global distribution of BC, including in the upper troposphere. |
|
|
Teil von |
|
|
|
|
|
|