|
Titel |
Quantifying the role of fire in the Earth system – Part 1: Improved global fire modeling in the Community Earth System Model (CESM1) |
VerfasserIn |
F. Li, S. Levis, D. S. Ward |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1726-4170
|
Digitales Dokument |
URL |
Erschienen |
In: Biogeosciences ; 10, no. 4 ; Nr. 10, no. 4 (2013-04-08), S.2293-2314 |
Datensatznummer |
250018185
|
Publikation (Nr.) |
copernicus.org/bg-10-2293-2013.pdf |
|
|
|
Zusammenfassung |
Modeling fire as an integral part of an Earth system model (ESM) is vital
for quantifying and understanding fire–climate–vegetation interactions on a
global scale and from an Earth system perspective. In this study, we
introduce to the Community Earth System Model (CESM) the new global fire
parameterization proposed by Li et al. (2012a, b), now with a more realistic
representation of the anthropogenic impacts on fires, with a
parameterization of peat fires, and with other minor modifications. The
improved representation of the anthropogenic dimension includes the first
attempt to parameterize agricultural fires, the economic influence on fire
occurrence, and the socioeconomic influence on fire spread in a global fire
model – also an alternative scheme for deforestation fires.
The global fire parameterization has been tested in CESM1's land component
model CLM4 in a 1850–2004 transient simulation, and evaluated against the
satellite-based Global Fire Emission Database version 3 (GFED3) for
1997–2004. The simulated 1997–2004 average global totals for the burned area
and fire carbon emissions in the new fire scheme are 338 Mha yr−1 and
2.1 Pg C yr−1. Its simulations on multi-year average burned area, fire
seasonality, fire interannual variability, and fire carbon emissions are
reasonable, and show better agreement with GFED3 than the current fire
scheme in CESM1 and modified CTEM-FIRE. Moreover, the new fire scheme also
estimates the contributions of global fire carbon emissions from different
sources. During 1997–2004, the contributions are 8% from agricultural
biomass burning, 24% from tropical deforestation and degradation fires,
6% from global peat fires (3.8% from tropical peat fires), and 62%
from other fires, which are close to previous assessments based on satellite
data, government statistics, or other information sources. In addition, we
investigate the importance of direct anthropogenic influence (anthropogenic
ignitions and fire suppression) on global fire regimes during 1850–2004,
using CESM1 with the new fire scheme. Results show that the direct
anthropogenic impact is the main driver for the long-term trend of global
burned area, but hardly contributes to the long-term trend of the global
total of fire carbon emissions. |
|
|
Teil von |
|
|
|
|
|
|