|
Titel |
The Holocene thermal maximum in the Nordic Seas: the impact of Greenland Ice Sheet melt and other forcings in a coupled atmosphere-sea-ice-ocean model |
VerfasserIn |
M. Blaschek, H. Renssen |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1814-9324
|
Digitales Dokument |
URL |
Erschienen |
In: Climate of the Past ; 9, no. 4 ; Nr. 9, no. 4 (2013-07-29), S.1629-1643 |
Datensatznummer |
250018097
|
Publikation (Nr.) |
copernicus.org/cp-9-1629-2013.pdf |
|
|
|
Zusammenfassung |
The relatively warm early Holocene climate in the Nordic Seas, known as the
Holocene thermal maximum (HTM), is often associated with an orbitally forced
summer insolation maximum at 10 ka BP. The spatial and temporal response
recorded in proxy data in the North Atlantic and the Nordic Seas reveals
a complex interaction of mechanisms active in the HTM. Previous studies have
investigated the impact of the Laurentide Ice Sheet (LIS), as a remnant from
the previous glacial period, altering climate conditions with a continuous
supply of melt water to the Labrador Sea and adjacent seas and with
a downwind cooling effect from the remnant LIS. In our present work we extend
this approach by investigating the impact of the Greenland Ice Sheet (GIS) on
the early Holocene climate and the HTM. Reconstructions suggest melt rates of
13 mSv for 9 ka BP, which result in our model in an ocean surface cooling
of up to 2 K near Greenland. Reconstructed summer SST gradients agree best
with our simulation including GIS melt, confirming that the impact of the
early Holocene GIS is crucial for understanding the HTM characteristics in
the Nordic Seas area. This implies that modern and near-future GIS melt can
be expected to play an active role in the climate system in the centuries to
come. |
|
|
Teil von |
|
|
|
|
|
|