dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Numerical issues associated with compensating and competing processes in climate models: an example from ECHAM-HAM
VerfasserIn H. Wan, P. J. Rasch, K. Zhang, J. Kazil, L. R. Leung
Medientyp Artikel
Sprache Englisch
ISSN 1991-959X
Digitales Dokument URL
Erschienen In: Geoscientific Model Development ; 6, no. 3 ; Nr. 6, no. 3 (2013-06-26), S.861-874
Datensatznummer 250017827
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/gmd-6-861-2013.pdf
 
Zusammenfassung
The purpose of this paper is to draw attention to the need for appropriate numerical techniques to represent process interactions in climate models. In two versions of the ECHAM-HAM model, different time integration methods are used to solve the sulfuric acid (H2SO4) gas evolution equation, which lead to substantially different results in the H2SO4 gas concentration and the aerosol nucleation rate. Using convergence tests and sensitivity simulations performed with various time stepping schemes, it is confirmed that numerical errors in the second model version are significantly smaller than those in version one. The use of sequential operator splitting in combination with a long time step is identified as the main reason for the large systematic biases in the old model. The remaining errors of nucleation rate in version two, related to the competition between condensation and nucleation, have a clear impact on the simulated concentration of cloud condensation nuclei (CCN) in the lower troposphere. These errors can be significantly reduced by employing solvers that handle production, condensation and nucleation at the same time. Lessons learned in this work underline the need for more caution when treating multi-timescale problems involving compensating and competing processes, a common occurrence in current climate models.
 
Teil von