dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Stable isotopes in caves over altitudinal gradients: fractionation behaviour and inferences for speleothem sensitivity to climate change
VerfasserIn V. E. Johnston, A. Borsato, Christoph Spötl, S. Frisia, R. Miorandi
Medientyp Artikel
Sprache Englisch
ISSN 1814-9324
Digitales Dokument URL
Erschienen In: Climate of the Past ; 9, no. 1 ; Nr. 9, no. 1 (2013-01-22), S.99-118
Datensatznummer 250017427
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/cp-9-99-2013.pdf
 
Zusammenfassung
The interpretation of stable isotope ratios in speleothem calcite is complex, and only in a few cases, unequivocal relationships with palaeoclimate parameters have been attained. A major issue is temperature, which has an effect on both the isotope incorporation into calcite and on environmental processes. Here, a field approach is taken, by studying the isotopic composition of calcites from monitored caves located in steep altitudinal topography in the northern Italian Alps. These create a thermal gradient (3–12 °C) apt to study the effects of temperature on the speleothem isotope record. Our data indicate that the magnitude of oxygen isotope disequilibrium effects, calculated as an offset from the experimentally determined equilibrium, decreases with increased elevation (cooler temperatures) and faster drip rate. Carbon isotope values exhibit 13C enrichment at high altitudes (colder temperatures) and slow drip rates. The results obtained support modelling and laboratory cave analogue experiments that indicate temperature, drip rate, pCO2 and supersaturation are important factors controlling stable isotope fractionation, but also stress the significance of ventilation and evaporation in the cave environment. It is proposed that the effects on stable isotope ratios observed along the altitudinal gradient can be analogues for glacial to interglacial temperature changes in regions which were extensively glaciated in the past.
 
Teil von