|
Titel |
Optimising the FAMOUS climate model: inclusion of global carbon cycling |
VerfasserIn |
J. H. T. Williams, R. S. Smith, P. J. Valdes, B. B. B. Booth, A. Osprey |
Medientyp |
Artikel
|
Sprache |
Englisch
|
ISSN |
1991-959X
|
Digitales Dokument |
URL |
Erschienen |
In: Geoscientific Model Development ; 6, no. 1 ; Nr. 6, no. 1 (2013-01-31), S.141-160 |
Datensatznummer |
250017364
|
Publikation (Nr.) |
copernicus.org/gmd-6-141-2013.pdf |
|
|
|
Zusammenfassung |
FAMOUS fills an important role in the hierarchy of climate models, both explicitly resolving atmospheric and oceanic dynamics
yet being sufficiently computationally efficient that either very long simulations or large ensembles are possible. An improved
set of carbon cycle parameters for this model has been found using a perturbed physics ensemble technique. This is an important
step towards building the "Earth System" modelling capability of FAMOUS, which is a reduced resolution, and hence faster
running, version of the Hadley Centre Climate model, HadCM3. Two separate 100 member perturbed parameter ensembles were
performed; one for the land surface and one for the ocean. The land surface scheme was tested against present-day and past
representations of vegetation and the ocean ensemble was tested against observations of nitrate. An advantage of using
a relatively fast climate model is that a large number of simulations can be run and hence the model parameter space (a large
source of climate model uncertainty) can be more thoroughly sampled. This has the associated benefit of being able to assess
the sensitivity of model results to changes in each parameter. The climatologies of surface and tropospheric air temperature
and precipitation are improved relative to previous versions of FAMOUS. The improved representation of upper atmosphere
temperatures is driven by improved ozone concentrations near the tropopause and better upper level winds. |
|
|
Teil von |
|
|
|
|
|
|