dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Volume cross section of auroral radar backscatter and RMS plasma fluctuations inferred from coherent and incoherent scatter data: a response on backscatter volume parameters
VerfasserIn M. V. Uspensky, P. Janhunen Link zu Wikipedia, A. V. Koustov, K. Kauristie
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 29, no. 6 ; Nr. 29, no. 6 (2011-06-22), S.1081-1092
Datensatznummer 250017042
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-29-1081-2011.pdf
 
Zusammenfassung
Norway and Finland STARE radar measurements in the eastward auroral electrojet are combined with EISCAT CP-1 measurements of the electron density and electric field vector in the common scattering volume to investigate the variation of the auroral radar volume cross section (VCS) with the flow angle of observations (radar look direction with respect to the E×B electron drift). The data set available consists of ~6000 points for flow angles of 40–85° and electron drifts between 500 and 2000 m s−1. The EISCAT electron density N(h)-profile data are used to estimate the effective electron density, aspect angle and thickness of the backscattering layer. It is shown that the flow angle variation of the VCS is rather weak, only ~5 dB within the range of the considered flow angles. The VCS values themselves respond almost linearly to the square of both the electron drift velocity magnitude and the effective electron density. By adopting the inferred shape of the VCS variation with the flow angle and the VCS dependence upon wavelength, the relative amplitude of electrostatic electron density fluctuations over all scales is estimated. Inferred values of 2–4 percent react nearly linearly to the electron drift velocity in the range of 500–1000 m s−1 but the rate of increase slows down at electron drifts >1000 m s−1 and density fluctuations of ~5.5 percent due to, perhaps, progressively growing nonlinear wave losses.
 
Teil von