dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel THEMIS observations of compressional pulsations in the dawn-side magnetosphere: a case study
VerfasserIn G. I. Korotova, D. G. Sibeck, V. Kondratovich, V. Angelopoulos, O. D. Constantinescu
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 27, no. 10 ; Nr. 27, no. 10 (2009-10-02), S.3725-3735
Datensatznummer 250016664
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-27-3725-2009.pdf
 
Zusammenfassung
We present THEMIS-A low- and high-energy plasma, magnetic field, and energetic particle observations of long period (11–36 min) irregular compressional pulsations in the dawnside magnetosphere from 08:00 to 12:24 UT on 7 November 2007. We demonstrate that the pulsations maintain thermal and magnetic pressure balance, then employ finite gyroradius techniques to determine wave properties from the gyrophase distributions of 5–10 keV ions. The waves generally move sunward at velocities ~10 km s−1 with the background plasma convection flow. Wavelengths range from 6700 to 23 300 km, corresponding to azimuthal wavenumbers m from 18 to 76. Wave periods decrease with increasing radial distance. Having determined the parameters describing the waves, we consider three previously proposed explanations: generation by substorm injection, generation by bounce or drift-bounce instabilities, and generation by the drift-mirror instability. The interval was quiet geomagnetically, arguing against any relationship to substorm injections. We found that ions with low energies of 69–628 eV or high energies of 28–615 keV would have been required to account for drift-bounce resonance during this interval, but inspection reveals ion fluxes at these energies near background levels during the time period considered. On the other hand, the criteria for the drift mirror instability are marginally satisfied. As predicted for the drift mirror instability, particle distributions peak more sharply near 90° pitch angles during magnetic field strength enhancements than during strength depressions. At this point we therefore interpret the compressional pulsations observed by THEMIS A in terms of the drift mirror instability.
 
Teil von