dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Parameter estimation using the genetic algorithm and its impact on quantitative precipitation forecast
VerfasserIn Y. H. Lee, S. K. Park, D.-E. Chang
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 24, no. 12 ; Nr. 24, no. 12 (2006-12-21), S.3185-3189
Datensatznummer 250015696
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-24-3185-2006.pdf
 
Zusammenfassung
In this study, optimal parameter estimations are performed for both physical and computational parameters in a mesoscale meteorological model, and their impacts on the quantitative precipitation forecasting (QPF) are assessed for a heavy rainfall case occurred at the Korean Peninsula in June 2005. Experiments are carried out using the PSU/NCAR MM5 model and the genetic algorithm (GA) for two parameters: the reduction rate of the convective available potential energy in the Kain-Fritsch (KF) scheme for cumulus parameterization, and the Asselin filter parameter for numerical stability. The fitness function is defined based on a QPF skill score. It turns out that each optimized parameter significantly improves the QPF skill. Such improvement is maximized when the two optimized parameters are used simultaneously. Our results indicate that optimizations of computational parameters as well as physical parameters and their adequate applications are essential in improving model performance.
 
Teil von