dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Observation of continuum radiations from the Cluster fleet: first results from direction finding
VerfasserIn P. M. E. Décréau, C. Ducoin, G. Rouzic, O. Randriamboarison, J.-L. Rauch, J.-G. Trotignon, X. Vallières, P. Canu, F. Darrouzet, M. P. Gough, A. M. Buckley, T. D. Carozzi
Medientyp Artikel
Sprache Englisch
ISSN 0992-7689
Digitales Dokument URL
Erschienen In: Annales Geophysicae ; 22, no. 7 ; Nr. 22, no. 7 (2004-07-14), S.2607-2624
Datensatznummer 250014950
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/angeo-22-2607-2004.pdf
 
Zusammenfassung
The Cluster fleet offers the first possibility of comparing non-thermal terrestrial continuum radiation from similarly equipped nearby observation points. A very rich data set has already been acquired on the Cluster polar orbit, between 4 and 19 Earth radii geocentric distances, and preliminary analysis has been carried out on these emissions. We focus in this paper on direction finding performed from all four spacecraft as a means to locate the position of the sources of this continuum radiation. Directions are derived from spin modulation properties, under the usual analysis assumptions of the wave vector of the radiation lying in the plane containing the spin axis and the antenna position at electric field minimum. All the spin axes of the four Cluster spacecraft are aligned perpendicular to the ecliptic, thus the aligned spacecraft antenna spin planes provide redundant 2-D views of the propagation path of the radiation and source location. Convincing 2-D triangulation results have been obtained in the vicinity of the source region. In addition, the out of spin plane component of the wave vector reveals itself to a certain extent through directivity characteristics compared at different distances of the spin plane to the ecliptic. The four case events studied (two of them taken near apogee, the other two near perigee) have confirmed general properties derived from previous observations: trapping in the lower frequency range, radiation escaping into the magnetosheath region in the higher frequency range. All propagation directions are compatible with source positions in the plasmapause region, however, at a significant distance from the equator in one case. Our observations have also revealed new properties, like the importance of small-scale density irregularities in the local amplification of continuum radiation. We conclude that more detailed generation and propagation models are needed to fit the observations.
 
Teil von