dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Optimal solution error covariance in highly nonlinear problems of variational data assimilation
VerfasserIn V. Shutyaev, I. Gejadze, G. J. M. Copeland, F.-X. Dimet
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 19, no. 2 ; Nr. 19, no. 2 (2012-03-16), S.177-184
Datensatznummer 250014186
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-19-177-2012.pdf
 
Zusammenfassung
The problem of variational data assimilation (DA) for a nonlinear evolution model is formulated as an optimal control problem to find the initial condition, boundary conditions and/or model parameters. The input data contain observation and background errors, hence there is an error in the optimal solution. For mildly nonlinear dynamics, the covariance matrix of the optimal solution error can be approximated by the inverse Hessian of the cost function. For problems with strongly nonlinear dynamics, a new statistical method based on the computation of a sample of inverse Hessians is suggested. This method relies on the efficient computation of the inverse Hessian by means of iterative methods (Lanczos and quasi-Newton BFGS) with preconditioning. Numerical examples are presented for the model governed by the Burgers equation with a nonlinear viscous term.
 
Teil von