dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Ideal point error for model assessment in data-driven river flow forecasting
VerfasserIn C. W. Dawson, N. J. Mount, R. J. Abrahart, A. Y. Shamseldin
Medientyp Artikel
Sprache Englisch
ISSN 1027-5606
Digitales Dokument URL
Erschienen In: Hydrology and Earth System Sciences ; 16, no. 8 ; Nr. 16, no. 8 (2012-08-29), S.3049-3060
Datensatznummer 250013445
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/hess-16-3049-2012.pdf
 
Zusammenfassung
When analysing the performance of hydrological models in river forecasting, researchers use a number of diverse statistics. Although some statistics appear to be used more regularly in such analyses than others, there is a distinct lack of consistency in evaluation, making studies undertaken by different authors or performed at different locations difficult to compare in a meaningful manner. Moreover, even within individual reported case studies, substantial contradictions are found to occur between one measure of performance and another. In this paper we examine the ideal point error (IPE) metric – a recently introduced measure of model performance that integrates a number of recognised metrics in a logical way. Having a single, integrated measure of performance is appealing as it should permit more straightforward model inter-comparisons. However, this is reliant on a transferrable standardisation of the individual metrics that are combined to form the IPE. This paper examines one potential option for standardisation: the use of naive model benchmarking.
 
Teil von