dot
Detailansicht
Katalogkarte GBA
Katalogkarte ISBD
Suche präzisieren
Drucken
Download RIS
Hier klicken, um den Treffer aus der Auswahl zu entfernen
Titel Artificial Neural Networks to reconstruct incomplete satellite data: application to the Mediterranean Sea Surface Temperature
VerfasserIn E. Pisoni, F. Pastor, M. Volta
Medientyp Artikel
Sprache Englisch
ISSN 1023-5809
Digitales Dokument URL
Erschienen In: Nonlinear Processes in Geophysics ; 15, no. 1 ; Nr. 15, no. 1 (2008-02-05), S.61-70
Datensatznummer 250012554
Publikation (Nr.) Volltext-Dokument vorhandencopernicus.org/npg-15-61-2008.pdf
 
Zusammenfassung
Satellite data can be very useful in applications where extensive spatial information is needed, but sometimes missing data due to presence of clouds can affect data quality. In this study a methodology for pre-processing sea surface temperature (SST) data is proposed. The methodology, that processes measures in the visible wavelength, is based on an Artificial Neural Network (ANN) system. The effectiveness of the procedure has been also evaluated comparing results obtained using an interpolation method. After the methodology has been identified, a validation is performed on 3 different episodes representative of SST variability in the Mediterranean sea. The proposed technique can process SST NOAA/AVHRR data to simulate severe storm episodes by means of prognostic meteorological models.
 
Teil von